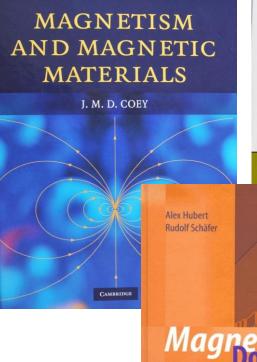


Units (and quantities) in Magnetism

Olivier FRUCHART

Univ. Grenoble Alpes / CEA / CNRS, SPINTEC, France

Slides: http://fruchart.eu/slides



Some references

2

Condensed Matter Stephen Blundell

Magnetism in

OXFORD MASTER SERIES IN CONDENSED MATTER PHYSICS

Bureau International des Poids et Mesures. URL http://www.bipm.org/

Siunits LATEX package. URL https://www.ctan.org/pkg/siunits

F. CARDARELLI, Encyclopedia of Scientific units, weights and measures, Springer, London, 2003.

R. B. GOLDFARB, The Permeability of Vacuum and the Revised International System of Units, IEEE Trans. Magn. 8, 1–3 (2017).

R. B. GOLDFARB, *Electromagnetic Units, the Giorgi System, and the Revised InternationalSystem of Units,* IEEE Magn. Lett. 9, 1205905 (2018).

S. SCHLAMMINGER, Redefining the kilogram and other SI units, IOP, 2018.

Springer

of Magnetic Microstructures

Quantities and units in physics

What is a quantity?

What is a unit ?

spinter

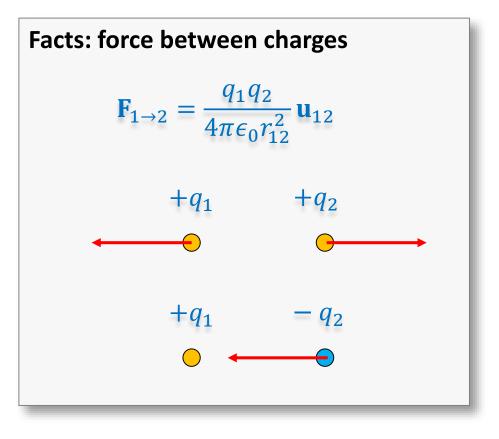
3

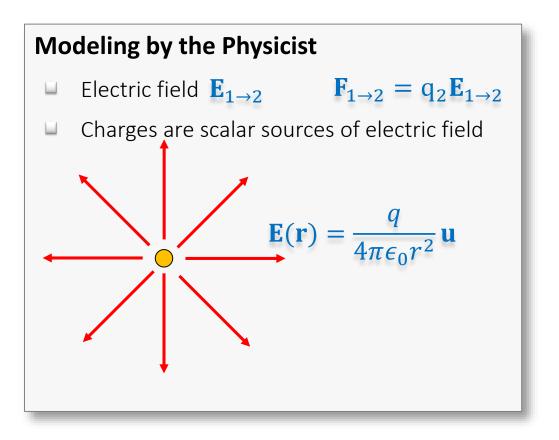
Quantities and units in physics

Quantity

(CC) BY

- \Box Example: speed $\mathbf{v} = \delta \boldsymbol{\ell} / \delta t$
- □ Dimension: $dim(\mathbf{v}) = \mathbf{L} \cdot \mathbf{T}^{-1}$

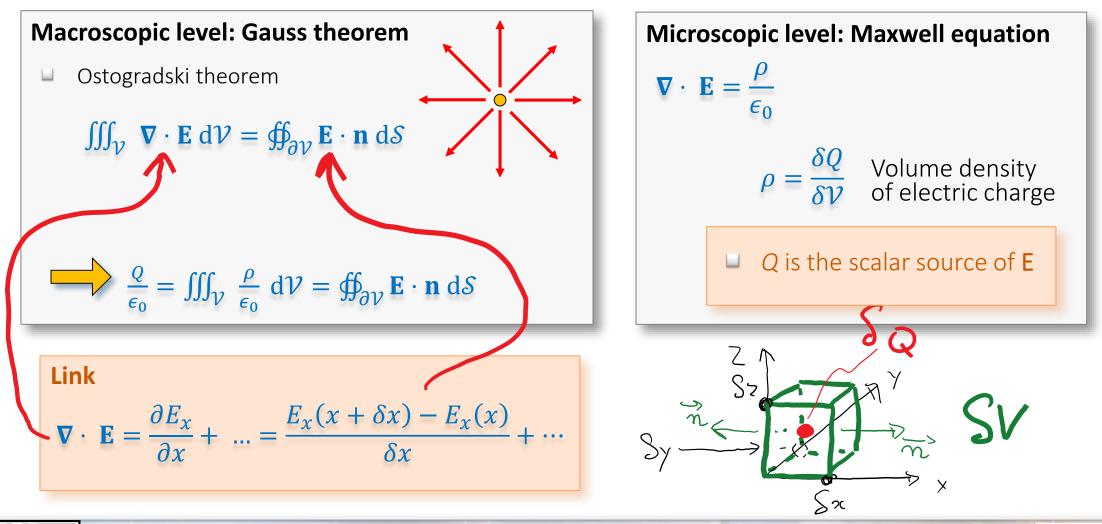



Units

- □ Why?
 - Provide a measure
 - □ Universality: share with others
- Possible formalism:

 $X = X_{\alpha} \langle X \rangle_{\alpha}$ Quantity Quantity Measure $\langle L \rangle_{SI} = meter = 100 \langle L \rangle_{cgs}$ $L = 50 \langle L \rangle_{SI} = 5000 \langle L \rangle_{cgs}$

The electric charge and the electric field



chinter

The electric charge and the electric field

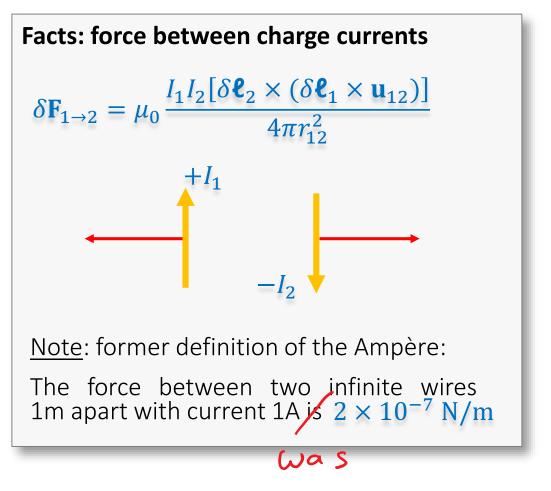
6

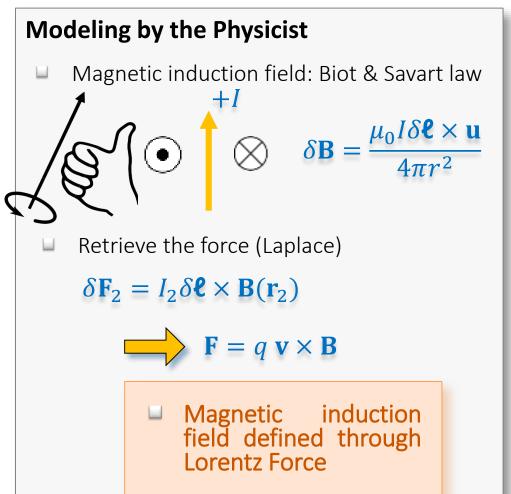
Dintec

Origin of magnetism

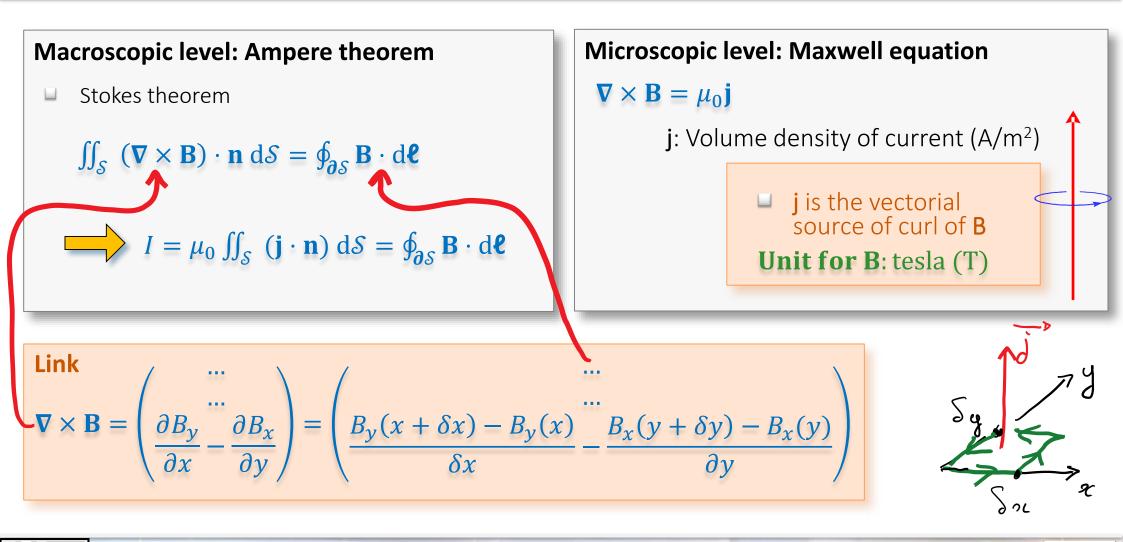
Century-old facts

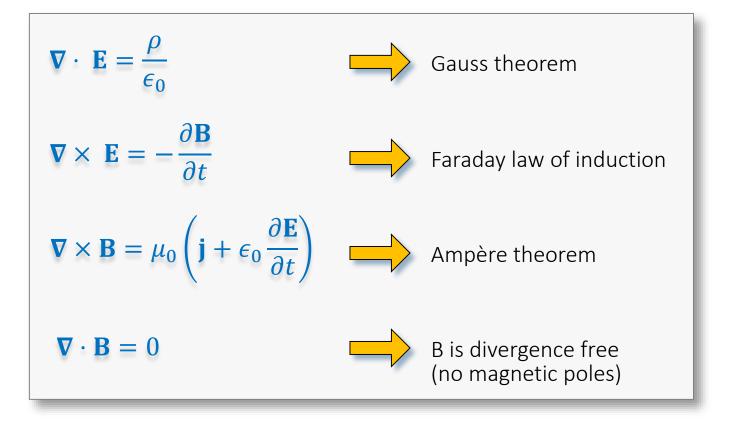
Magnetic materials (rocks)




Hans-Christian Oersted, 1777–1851.

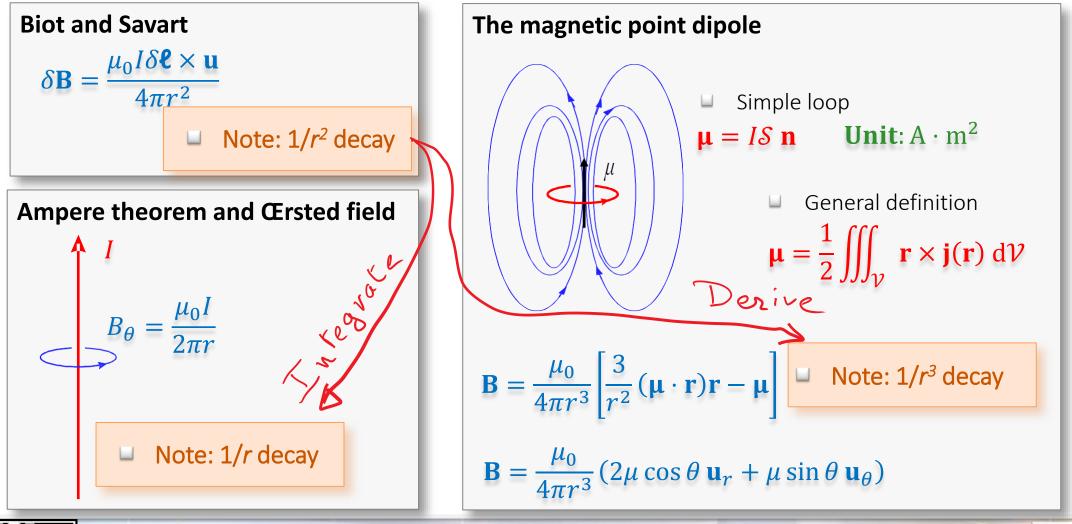
Birth of electromagnetism


School of Metrology in Magnetism, 1-2 Feb 2024, Lisbon



The electric current and the magnetic induction field

spinter


Maxwell equations (in vacuum)

spinter

10

The magnetic point dipole (a magnetic moment)

Olivier FRUCHART – Units in Magnetism

(CC) BY

School of Metrology in Magnetism, 1-2 Feb 2024, Lisbon

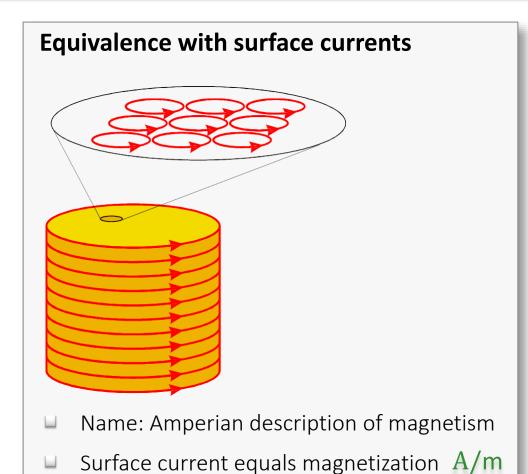
spinter

Magnetization

Definition

(CC) BY

Volume density of magnetic point dipoles


 $\mathbf{M} = \frac{\delta \mathbf{\mu}}{\delta \mathcal{V}} \qquad \text{A/m}$

Total magnetic moment of a body

 $\boldsymbol{\mathcal{M}} = \int_{\mathcal{V}} \mathbf{M} \, \mathrm{d} \boldsymbol{\mathcal{V}} \quad \mathbf{A} \cdot \mathbf{m}^2$

- Applies to: ferromagnets, paramagnets, diamagnets etc.
- Must be defined at a length scale much larger than atoms
- Is the basis for the micromagnetic theory

Olivier FRUCHART – Units in Magnetism

Free currents and bound currents

Spinte SPIN IN ELECTRO

Back to Maxwell equations

Disregard fast time dependence: magnetostatics

 $\mathbf{\nabla} \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_g \frac{\partial \mathbf{E}}{\partial t} \right)$

Consider separately real charge current, j_c from fictitious currents of magnetic dipoles j_m

 $\mathbf{\nabla} \times \mathbf{B} = \mu_0 (\mathbf{j}_{\rm c} + \mathbf{j}_{\rm m})$

J One can show: $\nabla \times \mathbf{M} = \mathbf{j}_{m}$ A/m² M × n = $\mathbf{j}_{m,s}$ A/m

Uside matter, **B** and μ_0 H coincide and have exactly the same meaning.

 The magnetic field H

 Image: One has:
 $\nabla \times \left(\frac{B}{\mu_0} - M\right) = \mathbf{j}_c$

 Image: By definition:
 $\mathbf{H} = \frac{B}{\mu_0} - \mathbf{M}$

 Image: A/m

 Image: V X H = J_c

B versus H : definition of the system

- **M**: local (infinitesimal) part in $\delta \mathcal{V}$ of the system defined when considering a magnetic material
- H: The remaining of B coming from outside $\delta \mathcal{V}$, liable to interact with the system

Derivation of the dipolar field

The dipolar field $\mathbf{H}_{\rm d}$

 By definition: the contribution to H not related to free currents (possible to split as Maxwell equations are linear)

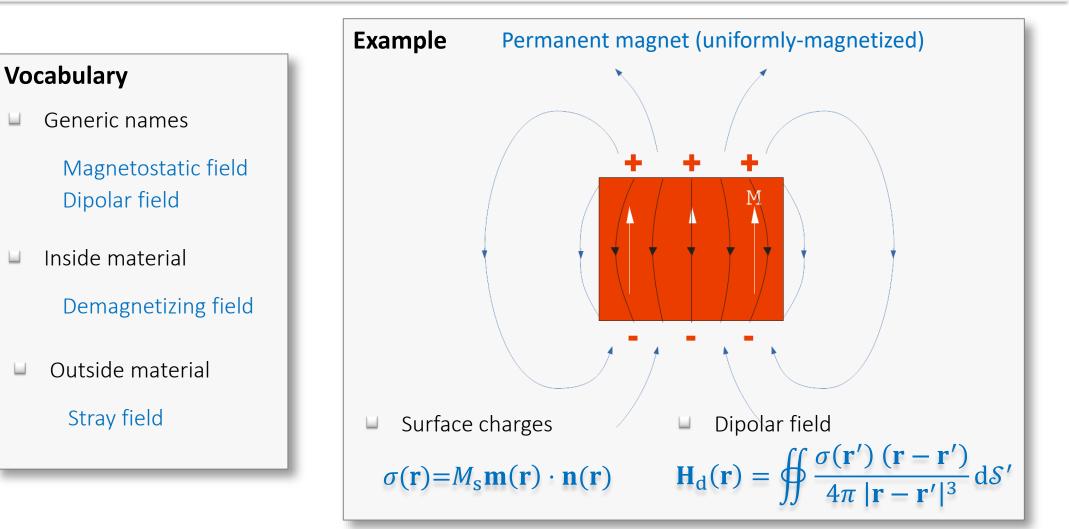
$$\nabla \times H_d = 0$$
 $H_d = -\nabla \phi_d$
 $H = H_d + H_{app}$ External to
magnetic body

Analogy with electrostatics

$$\nabla \times \mathbf{E} = 0 \quad \blacksquare \quad \mathbf{E} = -\nabla \phi$$

Derive the dipolar field Maxwell equation $\nabla \cdot \mathbf{B} = \mathbf{0} \rightarrow \nabla \cdot \mathbf{H}_{d} = -\nabla \cdot \mathbf{M}$ $\longrightarrow \mathbf{H}_{d}(\mathbf{r}) = -M_{s} \iiint_{\mathcal{V}'} \frac{[\nabla \cdot \mathbf{m}(\mathbf{r}')](\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^{3}} d\mathcal{V}'$

cointec


14

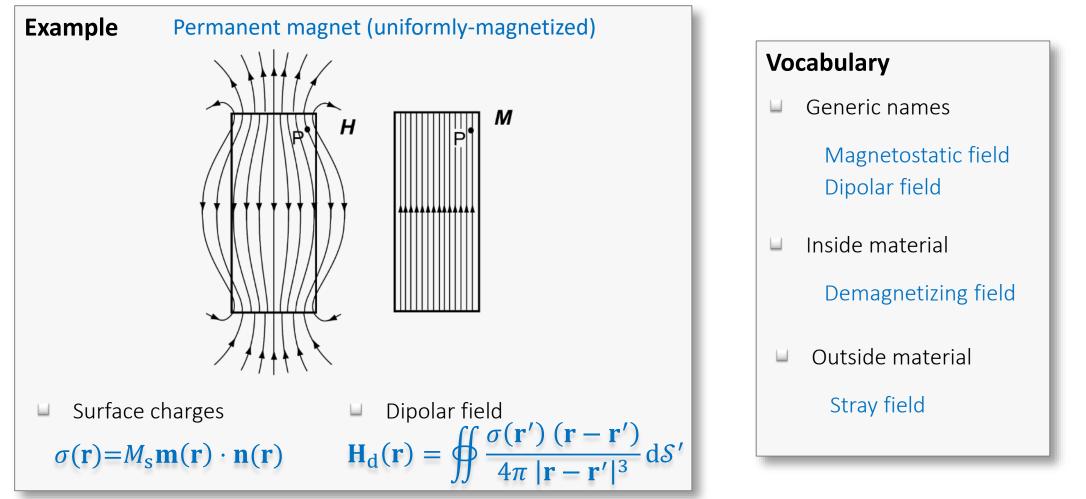
To lift the singularity that may arise at boundaries, a volume integration around the boundaries yields:

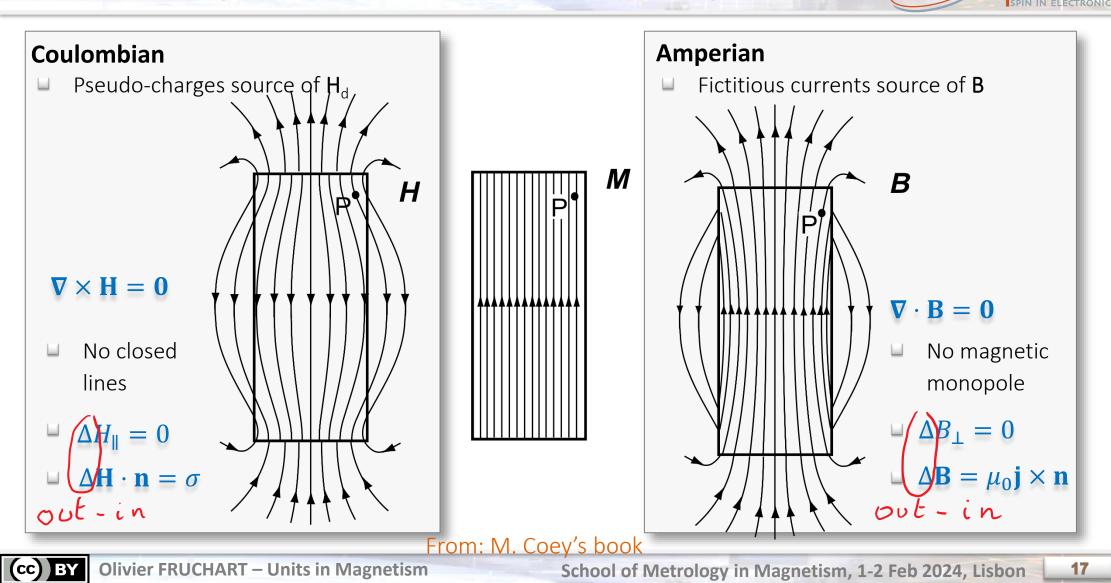
$$\mathbf{H}_{\mathrm{d}}(\mathbf{r}) = \iiint \frac{\rho(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} \mathrm{d}\mathcal{V}' + \oiint \frac{\sigma(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} \mathrm{d}\mathcal{S}'$$

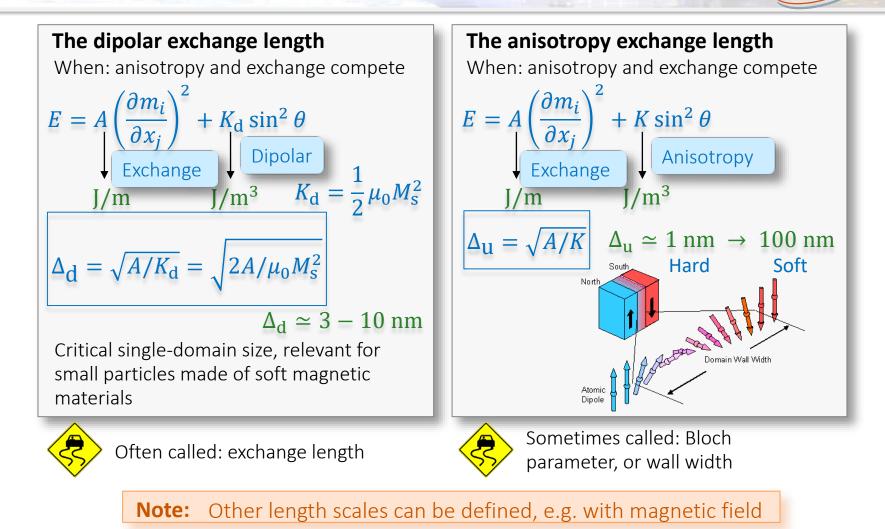
 $\rho(\mathbf{r}) = -M_{s} \nabla \cdot \mathbf{m}(\mathbf{r}) \rightarrow \text{volume density of magnetic charges}$ $\sigma(\mathbf{r}) = M_{s} \mathbf{m}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) \rightarrow \text{surface density of magnetic charges}$

Stray field and demagnetizing field

Stray field and demagnetizing field




Illustration from: M. Coey's book


Dintec

16

B versus H – Amperian versus Coulombian – Continuity conditions

Dimensional analysis (example: lengths)

School of Metrology in Magnetism, 1-2 Feb 2024, Lisbon

Units in SI versus cgs

	S.I.		cgs-Gauss				
Definitions	Meter	m	Centimeter	cm	Problems with cgs		
	Kilogram	kg	Gram	g		The quantity for charge current is missing	
	Second	S	Second	S		No check for homogeneity;	
	Ampere	А	Ab-Ampere	ab-A = 10 A		paradox for spintronics	
	$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$ $\mu_0 = 4\pi \times 10^{-7} \text{ S. I.}$		$\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}$ $"\mu_0" = 4\pi.$			 Inconsistent definition of H Dimensionless quantities are affected: demag coefficients, susceptibility etc. 	

Conversion of measures for the same quantity

Field	Н	1 A/m	← →	$4\pi \times 10^{-3}$ Oe	Œrsted
Moment	μ	$1 \mathrm{A}\cdot\mathrm{m}^2$	← →	10 ³ emu	
Magnetization	Μ	1 A/m	← →	$10^{-3} \text{ emu/cm}^{3}$	Electromagnetic Unit
Induction	B	1 T	← →	10 ⁴ G	Gauss
Susceptibility	$\chi = M/H$	1	← →	$1/4\pi$	

Tutorial on unitsQuestions:http://magnetism.eu/esm/2018/abs/fruchart-practical-abs1.pdfAnswers:http://magnetism.eu/esm/2018/abs/fruchart-practical-abs1.pdf

School of Metrology in Magnetism, 1-2 Feb 2024, Lisbon

Example: length
$$X = X_{\alpha}(X)_{\alpha}$$

Quantity
Quantity
Measure

The SI standard is 100 times LARGER than the cgs one

 $L = 50 \langle L \rangle_{\rm SI} = 5000 \langle L \rangle_{\rm cgs}$

50 m is equivalent to 5000 cm

The SI measure is 100 times **SMALLER** than the cgs one

The ratio is opposite if one considers the standard for a quantity (a quantity) or the measure (a number) of a given quantity

How to convert units from one system to another?

Process for converting units

1. Convert all basic units (MKSA)

 $\langle L \rangle_{SI} = meter = 10^2 \langle L \rangle_{cgs}$

 $\langle M \rangle_{SI} = kilogram = 10^3 \langle M \rangle_{cgs}$

 $\langle T \rangle_{SI} = second = \langle T \rangle_{cgs}$

 $\langle I \rangle_{SI} = Ampère = 10^{-1} \langle I \rangle_{cgs}$

- 2. Decompose any given quantity in basics units. In practice, identify a formula linking if to quantities already decomposed
- 3. Apply the formalism defining units and measures

 $X = X_{\alpha} \langle X \rangle_{\alpha}$

Example Mechanics, force F $\mathbf{F} = m \mathbf{a}$ $\dim(\mathbf{F}) = \mathbf{M} \cdot \mathbf{L} \cdot \mathbf{T}^{-2}$ $F = F_{SI} \langle F \rangle_{SI}$ $= F_{SI} \langle L \rangle_{SI} \langle M \rangle_{SI} \langle T \rangle_{SI}^{-2}$ $= F_{\rm SI} \ 10^2 \langle L \rangle_{\rm cgs} \ 10^3 \langle M \rangle_{\rm cgs} \ (1)^{-2} \langle T \rangle_{\rm cgs}^{-2}$ $= F_{\rm SI} 10^5 \langle F \rangle_{\rm cgs}$ 1 N is equivalent to 10^5 erg

(CC) BY

21

Proposed logarithmic formalism for dimensionality $\dim(\mathbf{X}) = \mathbf{L}^{\alpha} \cdot \mathbf{M}^{\beta} \cdot \mathbf{T}^{\gamma} \cdot \mathbf{I}^{\delta}$ $\langle X \rangle_{\rm SI} / \langle X \rangle_{\rm cgs}$ Log 10^{2} $[L] = [1 \ 0 \ 0 \ 0]$ 2 M (meter) $[M] = [0 \ 1 \ 0 \ 0] \qquad 10^3$ 3 K (kg) $[T] = [0 \ 0 \ 1 \ 0]$ 1 0 S (second) 10^{-1} $[I] = [0 \ 0 \ 0 \ 1]$ -1A (Ampère) $[\mathbf{X}] = \alpha[\mathbf{L}] + \beta[\mathbf{M}] + \gamma[\mathbf{T}] + \delta[\mathbf{I}]$ $[\mathbf{X}] = [\alpha \ \beta \ \delta \ \gamma]$

```
Example
                 Mechanics, force F
 \mathbf{F} = m \mathbf{a}
 [\mathbf{F}] = [m] + [\mathbf{a}] = [0\ 1\ 0\ 0] + [1\ 0\ -2\ 0]
 [\mathbf{F}] = [1\ 1\ -2\ 0]
           2 3 0
           23 0
                                 \rightarrow 5
        1 \text{ N} is equivalent to 10^5 \text{ erg}
```

chinter

Dimensionality of units in magnetism

Dimensionality

- A magnetic moment has the dimension of a pinpoint magnetic dipole $\mu = IS$. thus, $[\mu] = [2 \ 0 \ 0 \ 1]$.
- Magnetization is a volume density of magnetic moments: $\mathbf{M} = \mu/V$, so: $[\mathbf{M}] = [-1001]$. **M** and **H** have the same dimension as we can see from: $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$. Thus: $[\mathbf{H}] = [-1\ 0\ 0\ 1]$.
- Magnetic induction B is what matters in Lorentz force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$, so that: $[\mathbf{B}] = [0 \ 1 \ -2 \ -1]$.
- Magnetic flux is $\phi = BS$ so that: $[\phi] = [21 2 1]$.
- Finally, as in electricity, μ_0 makes the link between the source (current) and fields on one side, and energy and mechanics on the other side, as for the Lorentz force above: $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$, or in vacuum: curl $\mathbf{B} = \mu_0 \mathbf{j}$, from which one derives: $[\mu_0] = [1 \ 1 \ -2 \ -2].$

Units (easy situations)

- Induction **B**. 1 T is equivalent to 10^4 G, G standing for *Gauss*.
- Magnetization M. 1 A/m is equivalent to 10^{-3} uem/cm³, emu standing for *ElectroMagnetic Unit*.
- Flux ϕ . 1 Wb (Weber) is equivalent to 10⁸ Mx, Mx standing for *Maxwell*.
- Moment μ . 1 A \cdot m² is equivalent to 10³ emu.

23

How to convert units from one system to another?

Tricky case 1: magnetic permeability

 $\mu_0 = \mu_{0_{\rm SI}} \langle \mu_0 \rangle_{\rm SI}$

 $[\mu_0] = [1 \ 1 \ -2 \ -2]$

- $\rightarrow \langle \mu_0 \rangle_{\rm SI} = 10^2 \cdot 10^3 \cdot (10^{-2})^{-1} \langle \mu_0 \rangle_{\rm cgs}$
- $\rightarrow \langle \mu_0 \rangle_{\rm SI} = 10^7 \langle \mu_0 \rangle_{\rm cgs}$

$$\mu_0 = \mu_{0_{\text{SI}}} \langle \mu_0 \rangle_{\text{SI}} \rightarrow "\mu_{0_{\text{cgs}}}" = 4\pi$$

S.I. cgs-Gauss $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$ $\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}$

 \rightarrow Unit for permeability dropped; H 4pi larger in cgs

Tricky case 2: magnetic field H $\mu_0 H = \mu_{0_{\rm SI}} \langle \mu_0 \rangle_{\rm SI} H_{\rm SI} \langle H \rangle_{\rm SI}$ SI: $\mu_0 H = 4\pi 10^{-7} \ 10^7 \langle \mu_0 \rangle_{\text{cgs}} \ 10^{-3} H_{\text{SI}} \langle H \rangle_{\text{cgs}}$ Remember: $[H] = [1 \ 0 \ -2 \ 0]$ $H = H_{\rm cgs} \langle H \rangle_{\rm cgs}$ cgs: $\langle \mu_0 \rangle_{\rm cgs} = 1$ $\rightarrow 4\pi \ 10^{-3} \ H_{\rm SI} = H_{\rm cgs}$ 1 A/m is equivalent to $4\pi \ 10^{-3}$ Oe

chinter

The most tricky situation: dimensionless quantities

Demagnetizing coefficients link H with M $\langle \mathbf{H}_{d}(\mathbf{r}) \rangle = -M_{s} \,\overline{\mathbf{N}} \cdot \mathbf{m}$ **Unit:** dimensionless $\mathcal{E}_{d} = K_{d}V \mathbf{m} \cdot \overline{\mathbf{N}} \cdot \mathbf{m}$ $N_x + N_y + N_z = 1$ Definition H = -N M $\rightarrow \left(N_{\chi} + N_{y} + N_{z}\right)_{cgs} = 4\pi$ Definition $H = -4\pi N M$ $\rightarrow \left(N_x + N_y + N_z\right)_{\rm cgs} = 1$

(cc) BY

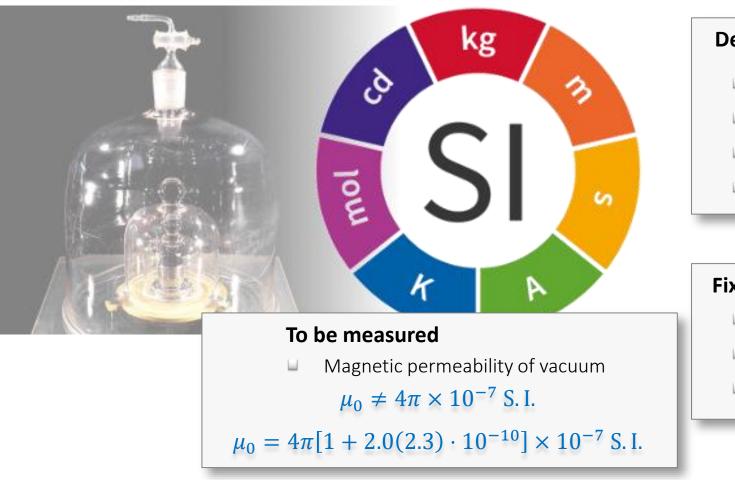
Magnetic susceptibility links M with H

 \Box Definition $\chi = \delta M / \delta H$

$$\rightarrow \chi_{\rm cgs} = \chi_{\rm SI}/4\pi$$

$$\Box$$
 Definition $\chi = 4\pi \ \delta M / \delta H$

$$\rightarrow \chi_{\rm cgs} = \chi_{\rm SI}$$



Both definitions are used...

spinter

Quantum revolution in SI units in 2019

Define quantities

- □ Times
- 🗉 Length
- Mass
- Electric charge

Fixed values

- Speed of light -> Define meter
- □ Planck constant -> Defines kg
- □ Charge of the electron

R. B. Goldfarb, IEEE Trans. Magn. MAG. 8, 1-3 (2017); R. B. Goldfarb, IEEE Mag. Lett. 9, 1205905 (2018) S. Schlamminger, Redefining the kilogram and other SI units, IOP Physics World Discovery (2018)

School of Metrology in Magnetism, 1-2 Feb 2024, Lisbon

Thank you for your attention !

www.spintec.fr | in

email: olivier.fruchart@cea.fr

